

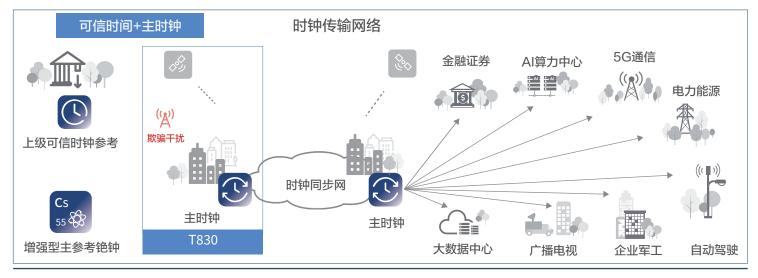
T830 高性能时钟服务器

BDPNT.COM

弹性时间和频率同步 平台 ePRTC

特点

- + 模块化、冗余性、大容量 PTP 主时钟
- + 独特的灵活性和多功能性 模块化可扩展设计可配置为 ePRTC、PRTC PTP GM 时钟、APTS、边界时钟和透明时钟 以及 NTP 服务器
- + 先进的抗干扰和欺骗检测算法
- + 启用或禁用安全管理、加密、认证授权和授时协议
- + 内置高性能铷原子钟和超高稳低相噪晶振可选
- + 高灵敏 北斗并发接收适应全球苛刻环境
- + 支持 BDSB1I/B1C+B2A 频点, 全面支持北斗三
- + 日平均准确度 <5E-13
- + 内置高性能铷原子钟, 24 小时偏差 200 纳秒
- + 支持 1Gbit/s 电口 6 路光口 4 路, 10Gbit/s 光口 4 路
- + 支持外部 10MHz、IRIG-B 码输入
- + 相对 UTC 时间准确度达到纳秒级
- + 可靠性 MTBF 大于 100000 小时


应用

+应用于金融、高频交易、AI 算力中心、国防军工、大数据机房

概述

T830 高精度时钟服务器为满足金融、证券、期货行业的高频交易及严格定时要求而设计,为满足用户对高精度、安全性、复杂网络部署及严格监管等要求,设备设计搭载高灵敏度抗干扰、防欺骗型国产北斗接收机、设备支持外置铯钟 ePRTC 守时功能、采用纯国产化信创平台架构、支持北斗、IRIG-B、PTP、1PPS+TOD 等多种参考输入,支持 10Gbit/s 和 1Gbit/s 光纤接口同时提供 PTP/NTP 授时服务。

设备主板采用国产海光 3 系处理器,搭载 2 通道 4 条内存插槽最高支持 256GB 内存,标配 6GbE LAN、4GbE SFP 接口,支持 10G/25G/40G/100G/200G 速率可抽取式网络模块扩展,配置独立 SATA 存储抽取卡槽,方便用户保密数据回收。丰富的设备健康状态监测支持冗余热插拔电源状态、卫星状态、外参考状态、ePRTC 状态、同步服务状态及欺骗干扰状态的实时显示和告警。

技术规格

产品概述:

本地时钟: OCXO、DCXO、铷原子钟、铯钟可选

PTP/NTP端口: 最多18个BITS输出端口最多4个符合时钟端口最多8路PSU热插拔电源最多2路

主要应用

增强型主时钟 (ePRTC)

主时钟 (PRTC A 和 PRTC B)

1588v2 主时钟(组播不限,单播支持 2048 个 PTP 客户端,@128pps) 1588v2 PTP 边界时钟(组播不限,单播最多支持 2048 个 PTP 客户端, @128pps),G.8273.2 BC D 型

1588v2 从属输入(作为 GNSS 的备份) -APTS

GNSS 接收器和 PRC/PRTC,包括多个物理同步输出接口的分发功能

同步供应单元(SSU)和复合时钟发生器

NTP 服务器

同步探针 -Syncprobe™ 监控和保证

NTP 功能

北斗三参考一级时钟服务器

基于 IPv4 和 IPv6 上的 NTP v1、 v2、v3、v4

NTP 单播 / 组播 / 广播

对称密钥和自动密钥认证

TIME&DAYTIME 时间和日期协议

NTP peering 对等协议

NTP 可选时间标准 (UTC/GNSS/本地)

纳秒级精度的硬件时间戳

锁定北斗时, NTP 服务器精度与 UTC 相差 ±100 纳秒以内

最多 18 个 NTP 服务器 IP 地址

在同一个以太网端口上同时支持 PTP 和 NTP

PTP 到 NTP 转换

每个流量最多支持 3 个堆叠 VLAN (Q-in-Q 服务提供商标记)

增强的 NTP 统计数据和客户端列表

每秒最多可进行 500000 笔免密认证服务

GNSS 中断时, PTP 可自动备份

PTP 网络功能

PTP 配置文件的支持:

ITU-T G.8265.1 频率传送配置文件 (IP 单播, 适用于 IPv4/IPv6)

ITU-T G.8275.1 时间 / 相位传送配置文件(全时钟支持 - 以太网多播)

ITU-T G.8275.2 时间 / 相位传送配置文件(辅助部分时间支持 - 适用于 IPv4/IPv6)

PTP 企业配置文件(混合多播和单播)

IEEE 1588 2008 PTP 默认配置文件(基于 IP 多播)

IEEE 1588 2008 PTP 默认配置文件 (基于以太网多播)

PTP 电力和公用事业配置文件: IEC/IEEE 61850-9-3,

IEEE C37.238-2011, IEEE C37.238-2017

PTP 广播和媒体配置文件: SMPTE ST 2059-2, AES67

2-step 时钟

随着从设备容量的增加,性能不下降

最多支持 16 个主/边界时钟(BC) IP 地址(IPv4 和 IPv6 同时在同一端口上支持)

最多支持 16 个 EVCs (IEEE 802.1Q 客户标记) 和堆叠的 VLANs

同时支持多种配置文件

支持 PTP (TAI) 和任意 (ARB) 时间尺度

纳秒级精度的硬件时间戳

支持在任何端口上同时作为主设备和从设备

每个流量最多支持 3 个堆叠 VLAN(Q-in-Q 服务提供商标记)

增强的 PTP GM/BC/ 从设备统计、性能监控(15 分钟和 24 小时)、阈值跨越警报(TCA)和 SNMP 管理内部最优的时钟恢复算法

使用硬件访问控制列表(ACL)和流量速率限制进行 DoS 保护

在 PRP IEC 62439-3 网络中作为单连接或双连接时钟 操作

硬件单元

时钟主机:

设备主机包括主控单位元,高清触摸显示屏、设备状态及按键切换按钮,包括电源、卫星、IEEE1588v2BC、

ePRTC、同步服务及欺骗干扰等状态。

板载 6x1Gbit/s RJ45、4x1Gbit/s SFP, 基于硬件时间戳的 (PTP 和 NTP)。所有光纤端口支持单模/多模、有色/无色、双纤/单纤的 SFP/SFP+模块以及铜缆 SFP 模块。

时钟模块:

北斗三天线输入: BNC,1路,5V

ePRTC 参考输入: BNC,2 路 10MHz/5MHz 正弦波, 幅度

大于 5dBm, 50Ω 匹配。

IRIG-B输入: BNC, 1路, DC

1PPS 脉冲输出: BNC, 1路, TTL 电平, 50Ω

同步精度: 优于 20ns 脉冲宽度: 100ms 上升沿: <10ns 抖动: <1ns

当外参考锁定时, 秒脉冲与外参考同步

当外参考失锁时, 由本地时钟保持

IRIG-B 输出: BNC, 1路, DC, 同步精度优于 10ns

10MHz 输出: BNC, 1路, 正弦波, 幅度 12±1dBm, 50Ω

时钟精度: <1E-12, 开机 48 小时以后, 北斗锁定状态,

24 小时平均准确度

短期稳定度: < 3E-12/1s

< 3E-12/10s < 1E-12/100s

< 1E-12/日 (GNSS 锁定)

相位噪声: ≤-95dBc/Hz @1Hz

≤ -130dBc/Hz @10Hz
 ≤ -145dBc/Hz @100Hz
 ≤ -155dBc/Hz @1kHz
 ≤ -158dBc/Hz @10kHz

失真:

谐波: ≤ -45dBc 非谐波: ≤ -80dBc

1MHz 输出: BNC, 1路, 方波, TTL, 50Ω

准确度同 10MHz

硬盘模块: SATA 固态可插拔硬盘, 可扩展到 4TB **电源**: 热插拔、模块化、输入 90V-264AC 或 DC, 47Hz ~ 63Hz。

扩展网络模块:2个10G/25G/40G/100G/200G网络卡

同步以太网 (SyncE):

符合 ITU-T G.8261/G.8262//G.8264 标准 以太网同步消息通道(ESMC)和具有 SSM 码的增强型 ESMC

在北斗卫星中断期间,使用同步以太网(Sync-E)进行时间保持

北斗三接收机模块:

自主研发的 SOC 基带 + 射频一体芯片,支持 BDS B1/B1C+B2A 频点,全面支持北斗三信号,支持抗干扰欺骗功能。

支持 B2A 单独工作,支持 A-BDS 辅助定位 支持原始观测量输出,具有干扰检测告警功能

授时精度(静态): 5 ns(RMS) 定位精度: 水平 1m, 高程 2.5m.

首次定位时间 TTFF: 冷启动 30s, 温启动 10s, 热启动

2s, 重捕获 2s

灵敏度: 捕获 -145dBm, 跟踪 -160dBm.

数据更新率: 0.1-10Hz

TOD+PPS 输出:

符合 G.8271 标准

ToD格式 – NMEA 0183 (\$GPZDA语句)、ITU-T G.8271

和 CCSA

RS232 电平, DB9 连接器

	时钟模块	扩展网络模块		
	ANT 10M-ePRTC 5M-ePRTC BEGDC-IN PPS 10MHz 1MHz BEGDC-OUT			
功能	天线、ePRTC、IRIG-B 输入,10MHz、1MHz 1PPS、IRIG-B 输出	2 路 10G/25G/40G/100G/200G,NTP 和 PTP		

	存储模块	电源模块		
	#SHATE O SATA			
功能	SATA 固态可插拔硬盘	两路冗余热插拔 AC/DC		

守时性能

	时钟	老化 / 天(30 天后)	温度稳定性
Opt-OCXO	恒温晶振	±3x10 ⁻¹⁰	±3x10 ⁻¹⁰
Opt-DOCXO	双恒温晶振	±2x10 ⁻¹⁰	±1x10 ⁻¹⁰
Opt-RB	铷原子钟	±1x10 ⁻¹²	±3x10 ⁻¹¹

注:设备在通电 72h 并与北斗同步 24h 后,接下来的 72h 内的有效日老化(时间漂移)

	200ns	400ns	1.1us	1.5us	5us	10us
Opt-OCXO	4hour	6 hours	10hours	15 hours	hours 20 hours	
Opt-DOCXO	8hours	10hours	15 hours	20days	1days	2 days
Opt-RB	1 day	1.8 days	3.5 days	4 days	8 days	12 days

注:图表中的数据是典型值(1o),设备在通电7天并与北斗同步72h后。

同步信号转换

输入/输出	SyncE Tx	BITS/CC OUT	CLIK OUT(10Mhz)	PTP	NTP	1PPS OUT	ToD
GNSS	$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark	
SyncE Rx	$\sqrt{}$	\checkmark	\checkmark	\checkmark	×	freq.	×
BITS IN	$\sqrt{}$	\checkmark	\checkmark	\checkmark	×	freq.	×
CLIK IN	$\sqrt{}$	\checkmark	\checkmark	\checkmark	×	freq.	×
PSS IN	$\sqrt{}$	\checkmark	\checkmark	\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$
PTP	V	V	V	\checkmark	V	V	\checkmark

GM/PRTC 频率和时间精度

当锁定到北斗时:

相位和时间 – 根据 PRTC/G.8272 的相位精度标准 一单频北斗,PRTC-A: 距离 UTC 的偏差 ±20ns 一多频北斗,PRTC-B: 距离 UTC 的偏差 ±10ns 频率 – 根据 PRTC/G.811 的频率精度标准

GM/ePRTC 频率和时间精度

当锁定到北斗并连接到 ePRTC 时

相位和时间精度 – 根据 ePRTC/G.8272.1 的相位精度标准 距离 UTC 的偏差 ± 10 ns

保持时间:

ePRTC+: 在至少 25 天内,偏差保证在 100ns 以内,典型 值为 30 天

SePRTC+: 在至少 45 天内,偏差保证在 100ns 以内,典型 值为 55 天

ePRTC 多源组合器可以最多接受 3 个相位 / 频率参考信号

Assured PNT(aPNT) 解决方案

多重备份支持北斗,包括 PTP,SyncE、CLIK、BITS 和本地振荡器

PRTC 可以在 3 个可用输入参考之间自动选择

通过恒温晶振/双恒温晶振/铷原子振荡器改进保持时间

在检测到干扰、欺骗时自动切换

ePRTC 将北斗 /PTP/PPS+ToD 与铯钟结合,在锁定模式 下提高精度并在北斗中断时延长保持时间

SyncprobeTM 监控和保障工具

1. 时钟精度监控

支持最多两个时钟探针,计算物理时钟的时间误差(TE)、时间间隔误差(TIE)和最大时间间隔误差(MTIE)

计算最大、恒定和动态时间误差、时间间隔误差和最大时间间隔误 差

可编程的源和参考信号: SyncE、BITS、PPS、北斗、CLIK基于 SNMP 的事件和最大时间间隔误差(MTIE)掩码和时间误差 阈值报警

时间误差和时间间隔误差原始数据的收集和导出到服务器 每日最大时间间隔误差和时间误差性能检测报告

2.PTP 时钟探针分析

支持最多4个PTP时钟探针,分析时间误差、时间间隔误差、最大时间间隔误差

支持主动和被动探针模式

可编程的参考信号: SyncE、BITS、PPS、北斗、CLIK

基于 SNMP 的事件和最大时间间隔误差(MTIE)掩码和时间误差 阈值报警

时间误差和时间间隔误差原始数据的收集和导出到服务器

每日最大时间间隔误差和时间误差性能检测报告

计算 PTP 数据包的最大、恒定和动态时间误差、时间间隔误差和 最大时间间隔误差

3.PTP 网络分析

包括 PTP 网络探针

数据包延迟和数据包延迟变化的性能统计

延迟不对称性

网络可用性

统计:根据 G.8261.1 标准 (FPP) 进行统计

数据包丢失统计

可编程的参考信号: SyncE、BITS、PPS、北斗、CLIK

增强的同步保障统计和性能监控: 提供 15min 和 24h 的监控数据,

包括数据导出、阈值越界报警和 SNMP 事件

用户可配置的最大时间间隔误差掩码

远程配置

基于文本的配置文件

使用 FTP/SFTP/SCP 进行配置文件复制

远程软件升级

管理和安全

本地管理

串口 RS232 通过 RJ45 连接

远程管理

任意本地 LAN 端口,使用 CLI、SNMP、Web 界面

支持 IPv4 和 IPv6

维护基于 VLAN 的管理隧道

可配置的静态路由和默认网关

综合管理、控制和北斗保障

管理协议

Telnet、SSH(v1/v2)

HTTP/HTTPS(TSL 1.2)

SNMP(v1/v2C/v3)

安全管理

配置数据库备份和恢复

通过 FTP、HTTPS、SFP 或 SCP 下载系统软件(双备份)

通过 RADIUS/TACACS+ 进行远程认证

SNMPv3 的认证和加密

访问控制列表 (ACL)

ICMP 过滤和速率限制

自动证书注册,完全集成到公钥基础设施(PKI)中

IP 网络

DHCP v4 和 v6

ARP 访问控制列表

IPv4 RIPv2 和静态路由

IPv6的 RIPng

ICMP

系统日志记录

rSyslog、报警日志、审计日志和安全日志

可配置系统定时源 - 本地 /NTP/PTP/PRTC (北斗)

用户可配置时区和夏令时(DST)

符合标准

 $ITU-T\ G.8261,\ G.8261.1,\ G.8262,\ G.8264,\ G.703,\ G.704,$

G.781, G.812, G.811

ITU-T G.8272.1, G.8272, G.8273.2

ITU-T G.8265.1, G.8275.1, G.8275.2

IEEE 1588v2 (PTP), 802.1Q (VLAN), 802.1ad,

802.1p(priority), 802.3ae (10G)

RFC 2863 (IF-MIB), RFC 2865 (RADIUS), RFC

2819(RMON), RFC 2460 (IPv6)

RFC 1059 (NTPv1), RFC 1119 (NTPv2), RFC 1305

(NTPv3), RFC 5905 (NTPv4), RFC 4330 (SNTPv4),

RFC868 (TIME), RFC867(DAYTIME), RFC 1321(autokey)

监管合规性

ICE 合规性

符合 RoHS 标准

美国国家标准协会 (ANSIC84.1-1989)

安全性: EN 60950-1,21 CFR 1040.10,EN 60825

EMI: 欧洲标准 EN 55022 2010 A 类

符合纯北斗系统要求符合国产化信创平台要求

电源

热插拔、模块化、输入 90V-264AC 或 DC, 具有过压、过流保护

47Hz ~ 63Hz

115VAC 时最大输入电流为 5.0A, 230VAC 时为 2.5A 安全认证: UL/CUL, TUV, CB, CCC, BSMI, CE, FCC。

EMI: 符合 FCC Class B, CISPR 22 Class B, CCC 标准。

高压测试:每个电源模块在 1800Vac 下测试,触发电流限制为

30mA。

电快速瞬变:符合 EN61000-4-5 三级(2kV峰值开路电压从线

/ 中性到地, 1kV 从线到中性)的浪涌电压要求。

浪涌抗扰度: 符合 EN61000-4-4 三级(2kV 开路电压)的电源

线噪声要求

静电放电 (ESD):符合 IEC 801-2/IEC1000-4-2标准,测试电压范围从 2kV 到 15kV,保证电源在这些电压下正常工作且无元件

故障

环境要求

尺寸 (宽 x 高 x 深): 447mm x 89mm x 450mm(2U)

重量(视配置而定): 8.5kg 至 14.5kg

工作温度 (环境): -5 至 45°C

存储温度: -40 至 +70°C (符合 GR-63-CORE 标准)

湿度: 5% 至 95% (无冷凝) 工作海拔: -450m 至 5000m

可选配件

北斗

单波和多波线套件:包括10/20/60/120/150米的室内和室外电缆、

屋顶天线、防雷器和安装套件

抗干扰 / 防欺骗单波北斗天线

适用于北斗 1:2/1:4/1:8 北斗分配器

GNSS 天线

电缆和适配器配件套件

BITS 线路卡的配线面板